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	I. Project Title

	Pathways relevant for hematopoietic stem cell transplantation and its underlying diseases in the Onco Array Data

	Date:
Nov 5, 2014

	II. Project Group Investigators

	Heike Bickeböller, Dieter Kube, University Medical School of Göttingen; Germany
Chris Amos, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA

Rayjean Hung, Dalla Lana School of Public Health, University of Toronto, Canada


	III. Background

	Haematopoietic Stem Cell Transplantation (HSCT) is the major curative therapy for cancers of the blood and immune system, however, the rate of survival of patients with HSCT has remained at 40-60% for the last two decades due to post-transplant complications including infection, graft-versus-host disease (GvHD) and relapse.

Five relevant clinical factors influencing the success of transplantation in patients with haematological disorders, including chronic myeloid leukaemia (CML) and acute lymphocytic and acute myeloid leukaemia (ALL and AML), have been identified by the European Group for Blood and Marrow Transplantation (EBMT). The clinical risk factors (EBMT-factors) are the age of the patient, the type of donor (sibling or matched unrelated donor (MUD)), the patient-donor gender combination, the stage of disease and the time from diagnosis to transplant. A clinical risk score (EMBT-score) utilising these EBMT-factors has been derived and was proposed in order to aid prediction and prevention of post-transplant complications. 

Previous genetic association studies have suggested that, besides HLA genes, non-HLA genes may play an important role in transplant outcome. Discussed for their role in HSCT and Graft vs. Host disease (GvHD) are the following major pathways and genes. 

· Antigen presentation (MHC-I/MHC-II)

· NK signaling (NKG2D/KIR etc)

· Jak/STAT signaling

· NF-kappaB signaling inkusive IKKepsilon/TBK

· Wnt-Signaling

· TLR – Toll-like receptor inklusive PKR/IRF und DAMPs also NLR (Nod-like)

· B Zellrezeptor signaling inklusive CARD11/BCL10/MALT1

· Insulin-signaling

· IL10/IL10R-family

· IL6/IL6R-family

· IL1/IL1R- family

· CXCR4/CCR5/CCR7 und Liganden

· TNFa/TNFß (LTa)/CD40 und entsprechende Rezeptoren (TNFSF/TNFRSF)
z.B. BAFF/APRIL  (TNFRSF13c/TNFSF13b/TNFRSF13b/TNFSF13)


	IV. Specific Aims

	We will apply the Logistic Kernel Machine Test (LKMT) of Wu et al. (2010) [1] and its extensions developed by [2,3] to the cross-cancer Onco Array data for the above 
mentioned pathways and genes. Pathway information from a variety of databases (such as KEGG) will be included in the analysis. Here we especially want to incorporate the underlying network structure of the pathway and the variety of interactions between its genes. The data will be splitted into discovery and replication data sets. 
In particular, our research aim is to identify HSCT-relevant SNPs/genes/pathways for overlap with other cancers or disease entities. Identified effects will be investigated further within HSCT networks.


	V. Methods

	Logistic Kernel Machine Test (LKMT)

Kernel-based approaches have been recognized as powerful statistical analysis tools in GWA studies due to their ability of dimension reduction and high flexibility [4]. This flexibility is the reason why incorporation of a variety of information on the pathway is possible. Thus, the choice of the kernel function determines what information is included and strongly influences the test's performance. Two novel kernels tailored towards powerful pathway analysis have been developed recently. 

The basic setting for the logistic kernel machine test assumes measurements on a trait 
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(binary trait for a case control study: coding 0 for control and 1 for case) for 
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 individuals. For each of them a set of influential covariables 
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 is recorded (such as sex, age, smoking status) as well as the genotypic information on a number of 
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The semiparametric logistic kernel regression model for the joint effect of all SNPs in the pathway, adjusted for the covariates, results in:
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    (1) Here
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 denotes an intercept term and 
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are regression coefficients corresponding to the additional covariates. The arbitrary function 
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describes the influence of the markers on the response. The form of this function is defined only by a positive definite kernel function
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. Generally, the kernel function aims to convert information for a pair of subjects to a quantitative value reflecting either their similarity or dissimilarity. The functions we are especially interested in include the basic linear kernel, an extension adjusting for differing pathway sizes [2], and a network based-kernel function, incorporating structural and interaction information [3].

The linear kernel is a basic way of analysing a SNP set in the logistic kernel machine test. Here the kernel function is given as

[image: image13.png]k(e7.27) =57, 227



,

with 
[image: image14.wmf]p

i

z

 and 
[image: image15.wmf]p

j

z

 the genotypes of individuals [image: image17.png]


and [image: image19.png]


 in pathway
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An additive effect of the marker information is assumed, interactions are not incorporated. One novel developed kernel is the following, adjusting for differing numbers of SNPs and genes in pathways 

[image: image22.png]


.

Here [image: image24.png]


 is the vector of individual[image: image26.png]
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the number of genes in pathway[image: image32.png]


. Scaling parameters[image: image34.png]
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 adjust for the number of genes in the pathway and the number of SNPs within these genes  (for more details see Freytag et al.).

Here the multiplicative structure considers interactions and type I error is maintained, as this kernel function corrects for size bias, an inflation of the type one error caused by different pathway sizes. 

The second extension, which has been shown to be particularly well suited in pathway analysis, incorporates the network structure of the pathway into the model. Here the kernel is calculated via       [image: image40.png]


,
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 maps SNPs to genes, [image: image44.png]


 represents the underlying network structure and [image: image46.png]


 is the genotype matrix. 

Omitting mathematical details, model (1) can be shown to be equivalent to a hierarchically expressed generalised linear mixed model (GLMM) of the following form
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Here we have
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be the vector of all additional covariates for the ith subject. Similarly, 
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is the vector of all genotypic information in pathway 
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 collected on this subject. 
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denotes the kernel computed for the individuals in the specific study and the investigated pathway. 

In this modelling framework it is straightforward to test for a true pathway effect. We consider the null hypothesis 
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The variance component score test has been demonstrated to be quite powerful in this testing situation.  Only needing an estimate of 
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 under the null hypothesis, it saves considerable computational effort. The test statistic is given as 
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 denoting the vector of all responses and 
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 the maximum likelihood estimate under the null hypothesis. 
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distributions can be approximated using a Satterthwaite procedure (for more details see Wu et al.). 
Our extensions are described in detail in [2,3]. They are size invariant (i.e. robust towards differences in the size of genes or pathways) and more importantly allow to model network characteristics of the pathway into the kernel.  



	VI. Materials or variables needed from the study PIs

	Case control onco array data. Besides disease, case control status, genotypes and further covariates (age,  sex, smoking), we aim to use information on SNPs (rs-numbers, chromosome, position, chip type and annotations) and original sample size. For application of our desired methods, imputation of sporadic missing genotypes will be necessary. We propose to conduct this imputation on the data itself using the imputation software BEAGLE [5]. Data should, when possible, already be filtered according to set quality criteria.


	VII. Time line

	


	
	Month
	
	
	

	
	1
	2
	3
	4
	5
	6
	7-8
	9-11
	12-13
	14-18
	19-23
	22-24

	Official access to lung cancer data TRICL/ILCCO GWA or oncoarray datasets 
	
	
	
	
	
	
	
	
	
	
	
	

	Preparation of gene and pathway information 
	
	
	
	
	
	
	
	
	
	
	
	

	preparation of data sets for analysis in particular missing genotype imputation 
	
	
	
	
	
	
	
	
	
	
	
	

	Implementation of all methods
	
	
	
	
	
	
	
	
	
	
	
	

	Pathway analyses for already available studies
	
	
	
	
	
	
	
	
	
	
	
	

	Analysis of all participating GWA studies
	
	
	
	
	
	
	
	
	
	
	
	

	Meta-Analysis of pathway results 
	
	
	
	
	
	
	
	
	
	
	
	

	Replication of findings
	
	
	
	
	
	
	
	
	
	
	
	

	Identification of major influencing genetic factors within significant pathways
	
	
	
	
	
	
	
	
	
	
	
	

	Publication of pathway analysis results
	
	
	
	
	
	
	
	
	
	
	
	


	VIII. Other remarks (e.g. publication plan, etc)

	We propose a consortium article together with some investigators from HSCT.
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